tests#

Modules

test_bracket

test_classifier

test_gcd

test_homflypt

test_jones

test_knotoids

test_knotoids_hard

test_multivariable_alexander

PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[9, 18, 10, 15], X[8, 4, 9, 3], X[5, 17, 6, 16], X[17, 5, 18, 14], X[15, 10, 16, 11], X[2, 12, 3, 11]];;9;;4;;{4, {1, 2, -3, -3, 2, -1, -2, 3, -2, 3, -2}};;{4, {1, 2, -3, -3, 2, -1, -2, 3, -2, 3, -2}};;does not exist;;0;;0;;1-x^(-10) + x^(-8) + x^(-4) + x^(-2) + x^2-x^4 + x^6;;{-10, 6, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1};;-6-2/v^4 + 6/v^2 + 2*v^2-2/z^2 + 1/(v^2*z^2) + v^2/z^2-5*z^2-z^2/v^4 + (5*z^2)/v^2 + v^2*z^2-z^4 + z^4/v^2;;{-2, 4, {-2, 2, 1, 0, -2, 0, 1}, {0, 0, 0}, {-4, 2, -2, 0, 6, 0, -6, 0, 2}, {0, 0, 0}, {-4, 2, -1, 0, 5, 0, -5, 0, 1}, {0, 0, 0}, {-2, 0, 1, 0, -1}};;-11-4/a^2-12*a^2-4*a^4 + 2/z^2 + 1/(a^2*z^2) + a^2/z^2-2/(a*z)-(2*a)/z + (2*z)/a + 6*a*z + 6*a^3*z + 2*a^5*z + 22*z^2 + (6*z^2)/a^2 + 22*a^2*z^2 + 6*a^4*z^2 + (4*z^3)/a + 2*a*z^3-6*a^3*z^3-4*a^5*z^3-13*z^4-(5*z^4)/a^2-13*a^2*z^4-5*a^4*z^4-(5*z^5)/a-5*a*z^5 + a^3*z^5 + a^5*z^5 + 2*z^6 + z^6/a^2 + 2*a^2*z^6 + a^4*z^6 + z^7/a + a*z^7;;{-2, 7, {-2, 2, 1, 0, 2, 0, 1}, {-1, 1, -2, 0, -2}, {-2, 4, -4, 0, -11, 0, -12, 0, -4}, {-1, 5, 2, 0, 6, 0, 6, 0, 2}, {-2, 4, 6, 0, 22, 0, 22, 0, 6}, {-1, 5, 4, 0, 2, 0, -6, 0, -4}, {-2, 4, -5, 0, -13, 0, -13, 0, -5}, {-1, 5, -5, 0, -5, 0, 1, 0, 1}, {-2, 4, 1, 0, 2, 0, 2, 0, 1}, {-1, 1, 1, 0, 1}};;2/q^3 + 4/q + 3*q + 1/(q^11*t^5) + 1/(q^7*t^4) + 1/(q^7*t^3) + 1/(q^7*t^2) + 1/(q^5*t^2) + 1/(q^3*t^2) + 1/(q^3*t) + 1/(q*t) + t/q + q*t + q^3*t^2 + q^3*t^3 + q^7*t^4;;{-11, 7, {-5, -5, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {-4, -2, 1, 1, 1}, {0, 0, 0}, {-2, -2, 1}, {0, 0, 0}, {-2, 0, 1, 1, 2}, {0, 0, 0}, {-1, 1, 1, 4, 1}, {0, 0, 0}, {0, 1, 3, 1}, {0, 0, 0}, {2, 3, 1, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {4, 4, 1}};;Y;;{{11, 2}, {1, 4}, {3, 9}, {5, 11}, {4, 6}, {2, 5}, {10, 7}, {6, 8}, {9, 1}, {7, 10}, {8, 3}};;{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};;9^3_21;;0.00000000000000000000;;3;;[{10, 12}, {-14, -18}, {-6, 16, -8, 2, 4}];;0;;0;;0;;{{0, 0, -1, 0, 0, 0, 0, 0}, {0, -1, 1, 0, 0, 0, -1, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, -1, 1, 0, 0, 1, -1}, {0, 0, 0, -1, 1, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, -1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, -1}};;4;;0;;1;;1;;1;;;1; PD[X[12, 2, 13, 1], X[6, 11, 7, 12], X[4, 6, 1, 5], X[9, 15, 10, 18], X[10, 3, 11, 4], X[13, 16, 14, 17], X[17, 14, 18, 5], X[15, 9, 16, 8], X[2, 7, 3, 8]];;9;;4;;{4, {1, 2, -3, -3, 2, -1, -2, 3, -2, 3, -2}};;{4, {1, 2, -3, -3, 2, -1, -2, 3, -2, 3, -2}};;does not exist;;0;;0;;1-x^(-10) + x^(-8) + x^(-4) + x^(-2) + x^2-x^4 + x^6;;{-10, 6, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1};;-6-2/v^4 + 6/v^2 + 2*v^2-2/z^2 + 1/(v^2*z^2) + v^2/z^2-5*z^2-z^2/v^4 + (5*z^2)/v^2 + v^2*z^2-z^4 + z^4/v^2;;{-2, 4, {-2, 2, 1, 0, -2, 0, 1}, {0, 0, 0}, {-4, 2, -2, 0, 6, 0, -6, 0, 2}, {0, 0, 0}, {-4, 2, -1, 0, 5, 0, -5, 0, 1}, {0, 0, 0}, {-2, 0, 1, 0, -1}};;-11-4/a^2-12*a^2-4*a^4 + 2/z^2 + 1/(a^2*z^2) + a^2/z^2-2/(a*z)-(2*a)/z + (2*z)/a + 6*a*z + 6*a^3*z + 2*a^5*z + 22*z^2 + (6*z^2)/a^2 + 22*a^2*z^2 + 6*a^4*z^2 + (4*z^3)/a + 2*a*z^3-6*a^3*z^3-4*a^5*z^3-13*z^4-(5*z^4)/a^2-13*a^2*z^4-5*a^4*z^4-(5*z^5)/a-5*a*z^5 + a^3*z^5 + a^5*z^5 + 2*z^6 + z^6/a^2 + 2*a^2*z^6 + a^4*z^6 + z^7/a + a*z^7;;{-2, 7, {-2, 2, 1, 0, 2, 0, 1}, {-1, 1, -2, 0, -2}, {-2, 4, -4, 0, -11, 0, -12, 0, -4}, {-1, 5, 2, 0, 6, 0, 6, 0, 2}, {-2, 4, 6, 0, 22, 0, 22, 0, 6}, {-1, 5, 4, 0, 2, 0, -6, 0, -4}, {-2, 4, -5, 0, -13, 0, -13, 0, -5}, {-1, 5, -5, 0, -5, 0, 1, 0, 1}, {-2, 4, 1, 0, 2, 0, 2, 0, 1}, {-1, 1, 1, 0, 1}};;2/q^3 + 4/q + 3*q + 1/(q^11*t^5) + 1/(q^7*t^4) + 1/(q^7*t^3) + 1/(q^7*t^2) + 1/(q^5*t^2) + 1/(q^3*t^2) + 1/(q^3*t) + 1/(q*t) + t/q + q*t + q^3*t^2 + q^3*t^3 + q^7*t^4;;{-11, 7, {-5, -5, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {-4, -2, 1, 1, 1}, {0, 0, 0}, {-2, -2, 1}, {0, 0, 0}, {-2, 0, 1, 1, 2}, {0, 0, 0}, {-1, 1, 1, 4, 1}, {0, 0, 0}, {0, 1, 3, 1}, {0, 0, 0}, {2, 3, 1, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {4, 4, 1}};;N;;{{3, 11}, {8, 2}, {4, 10}, {5, 3}, {1, 4}, {9, 6}, {7, 5}, {11, 8}, {6, 9}, {2, 7}, {10, 1}};;{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};;9^3_21;;0.00000000000000000000;;3;;[{16, 14}, {-12, -18}, {4, 2, -8, 10, -6}];;0;;0;;0;;{{0, 0, -1, 0, 0, 0, 0, 0}, {0, -1, 1, 0, 0, 0, -1, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, -1, 1, 0, 0, 1, -1}, {0, 0, 0, -1, 1, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, -1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, -1}};;4;;0;;1;;1;;1;;;1; PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[4, 13, 1, 14], X[9, 15, 10, 18], X[8, 4, 9, 3], X[5, 16, 6, 17], X[15, 14, 16, 5], X[17, 11, 18, 10], X[2, 12, 3, 11]];;9;;4;;{4, {-1, 2, -1, 2, -1, 3, -2, -2, 3}};;{4, {-1, 2, -1, 2, -1, 3, -2, -2, 3}};;does not exist;;0;;0;;1-x^(-10) + x^(-8) + x^(-4) + x^(-2) + x^2-x^4 + x^6;;{-10, 6, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1};;-6-2/v^4 + 6/v^2 + 2*v^2-2/z^2 + 1/(v^2*z^2) + v^2/z^2-5*z^2-z^2/v^4 + (5*z^2)/v^2 + v^2*z^2-z^4 + z^4/v^2;;{-2, 4, {-2, 2, 1, 0, -2, 0, 1}, {0, 0, 0}, {-4, 2, -2, 0, 6, 0, -6, 0, 2}, {0, 0, 0}, {-4, 2, -1, 0, 5, 0, -5, 0, 1}, {0, 0, 0}, {-2, 0, 1, 0, -1}};;-11-4/a^2-12*a^2-4*a^4 + 2/z^2 + 1/(a^2*z^2) + a^2/z^2-2/(a*z)-(2*a)/z + (2*z)/a + 6*a*z + 6*a^3*z + 2*a^5*z + 22*z^2 + (6*z^2)/a^2 + 22*a^2*z^2 + 6*a^4*z^2 + (4*z^3)/a + 2*a*z^3-6*a^3*z^3-4*a^5*z^3-13*z^4-(5*z^4)/a^2-13*a^2*z^4-5*a^4*z^4-(5*z^5)/a-5*a*z^5 + a^3*z^5 + a^5*z^5 + 2*z^6 + z^6/a^2 + 2*a^2*z^6 + a^4*z^6 + z^7/a + a*z^7;;{-2, 7, {-2, 2, 1, 0, 2, 0, 1}, {-1, 1, -2, 0, -2}, {-2, 4, -4, 0, -11, 0, -12, 0, -4}, {-1, 5, 2, 0, 6, 0, 6, 0, 2}, {-2, 4, 6, 0, 22, 0, 22, 0, 6}, {-1, 5, 4, 0, 2, 0, -6, 0, -4}, {-2, 4, -5, 0, -13, 0, -13, 0, -5}, {-1, 5, -5, 0, -5, 0, 1, 0, 1}, {-2, 4, 1, 0, 2, 0, 2, 0, 1}, {-1, 1, 1, 0, 1}};;2/q^3 + 4/q + 3*q + 1/(q^11*t^5) + 1/(q^7*t^4) + 1/(q^7*t^3) + 1/(q^7*t^2) + 1/(q^5*t^2) + 1/(q^3*t^2) + 1/(q^3*t) + 1/(q*t) + t/q + q*t + q^3*t^2 + q^3*t^3 + q^7*t^4;;{-11, 7, {-5, -5, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {-4, -2, 1, 1, 1}, {0, 0, 0}, {-2, -2, 1}, {0, 0, 0}, {-2, 0, 1, 1, 2}, {0, 0, 0}, {-1, 1, 1, 4, 1}, {0, 0, 0}, {0, 1, 3, 1}, {0, 0, 0}, {2, 3, 1, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {4, 4, 1}};;N;;{{11, 2}, {1, 4}, {3, 9}, {5, 11}, {4, 6}, {2, 5}, {7, 10}, {6, 8}, {9, 1}, {10, 7}, {8, 3}};;{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};;9^3_21;;0.00000000000000000000;;3;;[{10, 12}, {-18, -14}, {-6, 16, -8, 2, 4}];;0;;0;;0;;{{1, 0, -1, 0, 0, 0}, {-1, 1, 1, -1, 0, 0}, {0, 0, -1, 1, 0, 0}, {0, 0, 0, 0, 0, -1}, {0, 0, 0, -1, 1, 0}, {0, 0, 0, 0, 0, -1}};;4;;0;;1;;1;;1;;;1; L9n27{1,1};diagram_display.php?L9n27{1,1};linkL9n27{1,1}-50.png;diagram_display.php?L9n27{1,1};L9n27;;9;;L9n27;http://katlas.math.toronto.edu/wiki/L9n27;N;;{1,1};;350;;129;;{{1, -9, 5, -3}, {-7, 6, -8, 4}, {3, -2, 9, 8, -4, -5, 2, -1, -6, 7}};;{{12, 2, 13, 1}, {6, 11, 7, 12}, {4, 6, 1, 5}, {9, 18, 10, 15}, {10, 3, 11, 4}, {13, 17, 14, 16}, {15, 5, 16, 14}, {17, 8, 18, 9}, {2, 7, 3, 8}};;PD[X[12, 2, 13, 1], X[6, 11, 7, 12], X[4, 6, 1, 5], X[9, 18, 10, 15], X[10, 3, 11, 4], X[13, 17, 14, 16], X[15, 5, 16, 14], X[17, 8, 18, 9], X[2, 7, 3, 8]];;9;;4;;{4, {-1, 2, -1, 2, -1, 3, -2, -2, 3}};;{4, {-1, 2, -1, 2, -1, 3, -2, -2, 3}};;does not exist;;0;;0;;1-x^(-10) + x^(-8) + x^(-4) + x^(-2) + x^2-x^4 + x^6;;{-10, 6, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1};;-6-2/v^4 + 6/v^2 + 2*v^2-2/z^2 + 1/(v^2*z^2) + v^2/z^2-5*z^2-z^2/v^4 + (5*z^2)/v^2 + v^2*z^2-z^4 + z^4/v^2;;{-2, 4, {-2, 2, 1, 0, -2, 0, 1}, {0, 0, 0}, {-4, 2, -2, 0, 6, 0, -6, 0, 2}, {0, 0, 0}, {-4, 2, -1, 0, 5, 0, -5, 0, 1}, {0, 0, 0}, {-2, 0, 1, 0, -1}};;-11-4/a^2-12*a^2-4*a^4 + 2/z^2 + 1/(a^2*z^2) + a^2/z^2-2/(a*z)-(2*a)/z + (2*z)/a + 6*a*z + 6*a^3*z + 2*a^5*z + 22*z^2 + (6*z^2)/a^2 + 22*a^2*z^2 + 6*a^4*z^2 + (4*z^3)/a + 2*a*z^3-6*a^3*z^3-4*a^5*z^3-13*z^4-(5*z^4)/a^2-13*a^2*z^4-5*a^4*z^4-(5*z^5)/a-5*a*z^5 + a^3*z^5 + a^5*z^5 + 2*z^6 + z^6/a^2 + 2*a^2*z^6 + a^4*z^6 + z^7/a + a*z^7;;{-2, 7, {-2, 2, 1, 0, 2, 0, 1}, {-1, 1, -2, 0, -2}, {-2, 4, -4, 0, -11, 0, -12, 0, -4}, {-1, 5, 2, 0, 6, 0, 6, 0, 2}, {-2, 4, 6, 0, 22, 0, 22, 0, 6}, {-1, 5, 4, 0, 2, 0, -6, 0, -4}, {-2, 4, -5, 0, -13, 0, -13, 0, -5}, {-1, 5, -5, 0, -5, 0, 1, 0, 1}, {-2, 4, 1, 0, 2, 0, 2, 0, 1}, {-1, 1, 1, 0, 1}};;2/q^3 + 4/q + 3*q + 1/(q^11*t^5) + 1/(q^7*t^4) + 1/(q^7*t^3) + 1/(q^7*t^2) + 1/(q^5*t^2) + 1/(q^3*t^2) + 1/(q^3*t) + 1/(q*t) + t/q + q*t + q^3*t^2 + q^3*t^3 + q^7*t^4;;{-11, 7, {-5, -5, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {-4, -2, 1, 1, 1}, {0, 0, 0}, {-2, -2, 1}, {0, 0, 0}, {-2, 0, 1, 1, 2}, {0, 0, 0}, {-1, 1, 1, 4, 1}, {0, 0, 0}, {0, 1, 3, 1}, {0, 0, 0}, {2, 3, 1, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {4, 4, 1}};;N;;{{3, 11}, {8, 2}, {4, 10}, {5, 3}, {1, 4}, {6, 9}, {7, 5}, {11, 8}, {9, 6}, {2, 7}, {10, 1}};;{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};;9^3_21;;0.00000000000000000000;;3;;[{16, 14}, {-18, -12}, {4, 2, -8, 10, -6}];;0;;0;;0;;{{1, 0, -1, 0, 0, 0}, {-1, 1, 1, -1, 0, 0}, {0, 0, -1, 1, 0, 0}, {0, 0, 0, 0, 0, -1}, {0, 0, 0, -1, 1, 0}, {0, 0, 0, 0, 0, -1}};;4;;0;;1;;1;;1;;;1;

test_tutte

test_yamada