invariants#

List of possible invairants to implement:

Alexander Polynomial Conway Polynomial Jones Polynomial HOMFLY-PT Polynomial Kauffman 2-variable Polynomial (F polynomial) Writhe Linking Number Seifert Genus (Upper Bound) Turaev Genus (more advanced but diagrammatic) Tricolorability n-Colorability (mod n coloring)

Modules

affine_index_polynomial(k[, variable])

arrow_polynomial(k[, variable, normalize])

bracket

The bracket polynomial <.> (aka the Kauffman bracket) is a polynomial invariant of unoriented framed links.

cache

homflypt

l * P(L+) + l^-1 * P(L-) + m * P(L0) = 0

jones_polynomial(k[, variable])

Compute the jones polynomial from the (Kauffman) bracket polynomial :param k: :param variable: :return:

mock_alexander_polynomial(k[, variable])

module

R-module

tests

unplugging(k)

Computes the "unplugging" invariant T.

writhe(k)

The writhe is the total number of positive crossings minus the total number of negative crossings.

yamada

Compute the Yamada polynomial of a knotted planar diagram described in [Yamada, S.