invariants#
List of possible invairants to implement:
Alexander Polynomial Conway Polynomial Jones Polynomial HOMFLY-PT Polynomial Kauffman 2-variable Polynomial (F polynomial) Writhe Linking Number Seifert Genus (Upper Bound) Turaev Genus (more advanced but diagrammatic) Tricolorability n-Colorability (mod n coloring)
Modules
The bracket polynomial <.> (aka the Kauffman bracket) is a polynomial invariant of unoriented framed links. |
|
There are three variations: l-m: l * P(L+) + l^-1 * P(L-) + m * P(L0) = 0 v-z: v^-1 * P(L+) - v * P(L-) - z * P(L0) = 0 α-z: α * P(L+) - a^-1 * P(L-) - z * P(L0) = 0 xyz: x * P(L+) + y * P(L-) + z * P(L0) = 0 |
|
The bracket polynomial <.> (aka the Kauffman bracket) is a polynomial invariant of unoriented framed links. |
|
The Kauffman 2-variable polynomial. |
|
R-module |
|
|
Computes the "unplugging" invariant T. |
|
The writhe is the total number of positive crossings minus the total number of negative crossings. |
Compute the Yamada polynomial of a knotted planar diagram described in [Yamada, S. |