kauffman#

The Kauffman 2-variable polynomial.

Definition:

\[\begin{split}F(K)(a, z) &= a^{-\mathrm{wr}(K)} \, L(K), \\ F(\text{unknot}) &= 1, \\ F(s^-) &= a \, F(s), \\ F(s^+) &= a^{-1} \, F(s), \\ L(\times) + L(\times) &= z \, L(+) + z \, L(-).\end{split}\]

Personal notes:

F(k)(a,z) = a^-wr(K) * L(k)

L(O) = 1 L(s-) = a L(s) L(s+) = a^-1 L(s)

L(X) + L(X) = z (X+) + z (X-)

If K is an oriented knot/link, and K* the mirror image, then L(K*) = L(a^-1, z) F(K*) = L(a^-1, z) (this is wr(K*) = -wr(K) F(K*) != L(K) when they are not isotopic

L(K # K’) = L(K) * L(K’) L(K U K’) = (z^-1 (a + a^-1) - 1) L(K) * L(K’)

kauffman(k)#
Parameters:

k (PlanarDiagram | OrientedPlanarDiagram)

Return type:

Expr