alexander#
Alexander polynomials (one-variable and multivariable).
- alexander(k, symmetric=False)#
Compute the one-variable Alexander polynomial via HOMFLY-PT specialization.
- Parameters:
k (PlanarDiagram | OrientedPlanarDiagram) – Planar diagram of a knot or link. If not oriented, it will be oriented internally.
symmetric (bool) – If True, normalize to a symmetric (palindromic) representative.
- Returns:
A SymPy expression in
t
representing the Alexander polynomial.- Return type:
Expr
Notes
Uses the substitution
x=1
,y=-1
,z=-(t**1/2) + (t**(-1/2))
on HOMFLY-PT.Examples
>>> # K is a diagram of the trefoil (example; adjust to your construction) >>> # alexander(K) t**2 - t + 1
- multivariable_alexander(k)#
Alias for
alexander_multivariable()
.- Parameters:
- Return type:
Expr
- alexander_multivariable(k)#
Compute the multivariable Alexander polynomial from the abelianized Alexander matrix.
This returns the gcd (up to units) of all
(n-1)×(n-1)
minors of the Alexander–Fox matrix after collapsing generators to one variable per link component.- Parameters:
k (PlanarDiagram | OrientedPlanarDiagram) – Planar diagram (knot or link). If not oriented, it will be oriented internally.
- Returns:
A SymPy expression in variables
t1, t2, ...
(one per component).- Raises:
ValueError – If minors cannot be computed due to matrix shape.
- Return type:
Expr